Swarnima has a Master of Biomedical Engineering from the Indian Institute of Engineering Science And Technology, Shibpur. Her thesis focused on developing a polymer-nanocomposite scaffold for skin tissue engineering.
She completed a Bachelor of Biotechnology from IMS Engineering College, Ghaziabad, and secured an All India Rank 81 in the prestigious national level fellowship exam, CSIR-JRF. She worked at CSIR – Central Glass and Ceramics Research Institute, Kolkata.
Her research interests include working in the field of tissue engineering and developing new biomaterials for applications in regenerative medicine.
Modified polymer surfaces are gaining huge significance in various fields with wide applications in the biomedical industry. The surface modification on polymers can be achieved by various methods like exuberant physical method, self-organization and self-assembly and chemical functionalization of the polymeric surface. Among all the methods self-organization and self-assembly at the molecular level inspired by the biological moieties like protein, DNA is considered as the forerunner because of its low cost and easily approachable techniques. Thin-film dewetting leading to the formation of self-assembled arrays of polymer droplets creates a modified surface over which the scaffolding can be carried out. This regular arrangement of polymer droplets is utilized as a template for self-arrangement of nanoparticles over this surface creating a surface with higher functionalities. The underlying dewetting stress, engineers the nanoparticles to self-assemble among themselves and form different morphologies adding an edge to the already modified surface. The biocompatible polymer blends can create a membrane-like porous surface which is mechanically strong and the addition of nanoparticles increases the surface functionalities and act as a bio-scaffold. Theoretical analysis will also be carried to understand the physics and the phenomenon of formation of the structures and morphologies. Successful TE approaches will be best achieved when the biomaterial scaffold has mechanical properties, surface chemistries, and structural mechanics that are compatible with that of bones and allow osteointegration and subsequent replacement by native tissues. In the proposed project, the biodegradable polymer will be used for making scaffolds using selective laser sintering (SLS) processes. SLS will be carried out to investigate the effects of processing parameters on the microstructure, mechanical properties, and geometrical accuracy of the scaffolds.
View full project details